

EUV masks: ready or not?

<u>Emily Gallagher</u>^a, Karen Badger^a, Louis Kindt^a, Mark Lawliss^a, Gregory McIntyre^b, Alfred Wagner^c John Whang^a

- ^a IBM Microelectronics, 1000 River St., Essex Junction, VT 05452
- ^b IBM Microelectronics, 257 Fuller Road, Albany, NY 12203
- c IBM Research, 1101 Kitchawan Road, Yorktown Heights, NY 10598

Outline

- EUV mask readiness is a huge topic
 - -Many companies heavily engaged internally
 - -Recently the subject of a plenary session at SPIE Photomask 2011 "Is it too late to panic? EUV is Real!"
- This presentation
 - —Is NOT a review of ITRS roadmaps
 - Is NOT a summary of all technical material presented in the last year (though some references are included)
 - -IS a balanced assessment of mask readiness for pilot line work in 2013

Introduction

"A rubric is an assessment tool for communicating expectations of quality." - Wikipedia

- To answer the readiness question, review mask readiness in six key areas:
 - -Mask processing
 - -Blank
 - -Mask defectivity (as built)
 - -Mask defectivity (as used)
 - -OPC
 - -Black border
- Included development areas that are not purely "mask" because of tight linkage to successful EUV solution

EUV rubric	2013 pilot outlook
Mask process	
Mask blank	
Mask defectivity (as built)	
Mask defectivity (as used)	
OPC	
Black border effect	

likely with work

possible with significant work

possible with significant work, investment & time

Mask process: general results

- EUV mask process achieves CD control comparable to optical masks
 - -Sample data from clear feature on positive resist mask in table
 - -Already meet 2012 targets for CD & IP

EUV test mask data (nm@4X)	2011	2012 ITRS tgt*
CD uniformity (30)	1.6	3.3
Linearity 60-1000nm clear	4.9	5.4
Image placement (3σ)	4.0	4.8

SEM image

* ITRS, 2010

Mask process: CD

- Two reasons for EUV-specific development to meet targets across all densities:
 - 1. Mask CD variations are not the only contributor to wafer CD variations
 - 2.Electron backscattering of EUV mask films differs from binary optical films (OMOG), changing ebeam proximity correction requirements
 - -Modified PEC kernel
 - -Smaller correction grid

mask impact on wafer CD

Gallagher et al., IBM, SPIE 7969-30 (2011)

A. Wagner, unpublished, 2011

Mask process: roughness

- Three components to roughness:
 - 1. Line Edge Roughness (LER)
 - -Mask component of wafer LWR is ~2nm (4X) for 2012
 - -Current mask processes LER 3-4nm
 - 2. Replicated surface roughness (RSR)
 - -AFM tends to over-predict RSR
 - Primarily increases LWR at defocused exposure (adds in quadrature)
 - 3. Capping layer roughness
 - -Lower order effect
- Process development needed, but not likely to gate pilot development

Patrick Naulleau, CXRO at LBL, SPIE 8166-04 (2011)

Mask process summary

Readiness for 2013 pilot:

 Possible with significant work on minimizing roughness and improving ebeam corrections

EUV rubric	2013 pilot outlook
Mask process	

Mask blank: non-flatness

- Wafer image placement errors are generated by non-flat EUV masks
 - In plane distortion (IPD)
 - –Out of plane distortion (OPD)
- Masks will not be perfectly flat, despite progress; development needs:
 - Determine flatness requirement because tradeoffs exist with substrate defectivity
 - Develop compensation during ebeam write, predicated on repeatable chucking

Mask blank: defects

- Multilayer defects become printable phase defects on masks
- Blank defect trends are improving
 - Example of AGC data shown
 - Assuming maximum printable field size, #defects of concern:
 - •~ 15 ML defects 1H11
 - •~ 10 ML defects 1H13
- Mask blanks will have some defects
 - Mitigation methods will be needed

Mask blank summary

Readiness for 2013 pilot:

- Suppliers are making progress on both defect levels and flatness but both need mitigation efforts in the mask house
- For more detail... Session 8 "Critical assessment of substrate and mask blank readiness" Ted Liang

EUV rubric	2013 pilot outlook
Mask process	
Mask blank	

Defect avoidance by pattern shift

- Illustration of concept
 - Blank with 7 defects
 - Contact mask design
 - Position design relative to blank defects so that all defects fall under absorber

Analysis on IBM designs to answer:

- 1. What fraction of defects intercept mask features?
 - With and without pattern shifts
- 2. Probability of eliminating all blank defects using pattern shift
 - Number, size and shape of defects
 - Contact, metal and via levels
 - Shift field size

Defect avoidance: motivation

- Explore probability of building a defect free mask as a function of defect size
- Contact design data with 8.3% open area
- No pattern shift applied
- Without pattern shift, very low probability of building a defect free mask

Defect avoidance: pattern shift

- Explore the effect of blank defects on mask yield with pattern shift on the same contact design data
 - -Up to 16um pattern shift in x or y
- Large defects will impact yield
- ~30 defects is the upper limit for reasonable yield
- Feasible!

Patterned inspection

- Inspection capability can be verified using standard methods:
 - 1. Build programmed defect masks
 - 2. Inspect on multiple tools
 - 3. Determine detect threshold
 - 4. Establish whether defect sensitivity is sufficient
- Example here includes optical and ebeam patterned inspection
- Printability of defects must be included in assessment

Defect verification

- Commercial actinic tools are not yet available
- Options for pilot production include
 - Wafer print
 - Actinic Inspection Microscope (AIT)
 - -Other research tools
- AIT used on selected defects to determine printability

K. Goldberg I. Mochi, AIT images 2011

Defect repair & verification

- Example illustrates sample bridge repairs that were not optimized and would require process modifications
- Repair process learning demands feedback on printability
 - -SEMs, AFMs and non-actinic inspection are not sufficient
 - -Feedback is slowed by AIT and/or wafer verification

Defect repair & verification

R. Jonkheere, IMEC, SPIE 8166-42 (2011) & in Session 9: "Progress towards defect-free EUV reticles for NXE3100"

Mask defectivity (as built) summary

Readiness for 2013 pilot:

- Feasible but...
- Successful pattern shift requires:
 - -Excellent coordinate accuracy
 - Low-defect fiducial process
 - Infrastructure for sorting blanks and patterns
- All printing defects need to be detectable
- Repairs remain challenging

EUV rubric	2013 pilot outlook
Mask process	
Mask blank	
Mask defectivity (as built)	

Mask defectivity: handling & defects

- No EUV pellicle exists today
- Dual pod solution alternative
 - -E152 EUV pod standard established in 2009 but still in flux
 - Absence of single pod for mask finish to wafer exposure (including shipping)
- Areas of concern for defect and contamination:
 - Electrostatic chuck contact
 - Shipping
 - Handling
 - -Storage
- Cleaning will improve mask lifetime, but not solve all issues

Example of e-chucking accelerated damage on ADT

O. Wood, EUVL Litho Symposium, 2010

Mask defectivity: cleaning durability

- Excellent cleaning durability obtained
- >99% removal efficiency
- After 100 cleans
 Ru cap integrity
 confirmed with
 TOFSIM
- No one can yet test full fluence effects of mask materials

Mask defectivity (as used) summary

Readiness for 2013 pilot:

 Yields are likely be plagued by particle adders and contamination

EUV rubric	2013 pilot outlook
Mask process	
Mask blank	
Mask defectivity (as built)	
Mask defectivity (as used)	

OPC: Shadow effect

- 3D feature & exposure angle creates orientation-dependent shadow
- Simple 1D horizontal-vertical (HV) bias appears sufficient for simple patterns
- Smaller and complex patterns will probably need 2D models

Shadow correction: 70nm thick absorber

OPC: flare

- Flare ~ unwanted light that reaches the wafer resist
 - Includes scatter from optics and mask
 - Nominal flare map calculated assuming ideal binary mask
- Non-correctable flare is the concern
- Increased reflectivity (thinner absorber) adds intensity to dark regions
- May need to include finite EUV absorber reflectivity (1-2%)

Through slit flare	ADT	NXE:3100
Maximum	<15%	< 5%
Range	~ 7%	~ 2%

Frank Driessen, ASML, SPIE 8166-23 (2011)

OPC (mask-specific) summary

Readiness for 2013 pilot:

- EUV OPC methods build on optical ones, but rely on stability of the mask and lithography
- For more detail... Session 5 "Shadowing effect compensation requirements for 15nm node EUV lithography" S. Raghunathan, O.Wood

EUV rubric	2013 pilot outlook
Mask process	
Mask blank	
Mask defectivity (as built)	
Mask defectivity (as used)	
OPC	

Black border

- Two solutions for source light that is not blocked by the ReMa blade
- OPC correction
 - Effectiveness of OPC compensation depends on stability of blade position
 - Recent ADT data shows left-to-right asymmetry
 - NXE3300 ReMa may support OPC solution
 - Requires edge die exposures to ensure the full fields have the same OPC compensation (throughput concern)
- Frame or "black border" on mask
 - Process developed and demonstrated*
 - Impact to defectivity and lifetime must be quantified

^{*} For example, Takashi Komo, Selete J. Micro/Nanolith. MEMS MOEMS 9, 023005 (2010)

Conclusion

- All mask areas require development
- Defectivity remains the largest concern and will impact yield for pilot production in 2013
- Lack of actinic tools demands wafer print and leveraging actinic metrology tools for process & defect verification

EUV rubric	2013 pilot outlook
Mask process	
Mask blank	
Mask defectivity (as built)	
Mask defectivity (as used)	
OPC	
Black border effect	

likely with work

possible with significant work

possible with significant work, investment & time

EUV masks: ready or not?

EUV masks could be ready

for 2013 pilot...

but only with increased focus and investment

Acknowledgements

- IBM's mask house engineering and manufacturing teams for mask builds and processing
- Sematech for Mask Blank Development Center metrology and AIT time
- Rik Jonkeere (IMEC), Patrick Naulleau (CXRO), Kenneth Goldberg (CXRO), Iacopo Mochi (CXRO), Obert Wood (GLOBALFOUNDRIES), Sudhar Raghunathan (GLOBALFOUNDRIES)

Note: Portions of this work were performed by the Research Alliance Teams at various IBM Research and Development Facilities.

